Epsilon 1-4 LSCplus

Epsilon 1-4 LSCplus

Product description

The Epsilon 1-4 LSCplus freeze dryer is a very compact, general purpose high-performance laboratory and pilot unit for tabletop installation. The application area of this unit extends from routine drying operations to process optimisation tasks.

This unit is suitable for drying solid or liquid, mainly aqueous products in vials, ampoules, tubes, other glass containers or dishes.

The integrated drying manifold design facilitates the use of round-bottom flasks and wide-neck bottles.

The directly cooled and heated shelves made from Teflon coated solid aluminium enable especially fast cooling and heating processes.

 

Brochure

Manual

Technical data
Ice condenser capacity: 4 kg
Ice condenser performance:3 kg / 24 h
Ice condenser temperature:-55 °C
chamber volume:40 litres
Shelf dimensions:270 x 400 mm (W x D)
Number of shelves:1
Shelf area:0,108 m²
Shelf spacing:140 mm with sealing device
172 mm without sealing device
Shelf temperature:-45 °C  to +60 °C
Shelf temperature accuracy:max. ±2 °C
Cooling system:Air cooled (optionally water cooled)
Ice condenser cooling system:1 compressor, 0,51 kW
Shelf cooling system:(see ice condenser cooling system)
Unit dimensions:780 x 975 x 530 mm (H x W x D)

Wireless Temperature Measurement plus

The WTMplus wireless product temperature measurement system avoids the disadvantages arising from the use of wired temperature sensors. It is significantly easier to use in practice. There is no need for temperature sensor cables or connectors inside the vacuum chamber. The wireless self-powered sensors are placed manually or automatically when the product vials or dishes are filled and report the corresponding product temperatures to the unit controller during the entire lyophilisation process.

 

Technical data
Probe dimensionsLength: 21 mm plus 29 mm flexible antenna
Diameter: 2.8 mm
Temperature measuring range-60 °C to +140 °C
Measurement accuracy±0.5 K
Temperature resolution0.1 K
HF carrier frequency2.4000 – 2.4835

 

 

Comparative pressure measurement

In addition to product temperature measurement and pressure rise testing, the simultaneous use of two vacuum sensors with different measuring principles can provide information about the progress of the drying process. The commonly used Pirani gauge indicates higher absolute pressures at the start of the primary drying phase because its operation is dependent on the gas type and large amounts of water vapour are released at the start of the primary drying phase. By contrast, capacitive pressure sensors are independent of the gas type. The approaching end of the primary drying phase, which occurs when there is no longer a significant concentration of water vapour, is indicated by the gradual approach of the two pressure curves to each other during the process.

LyoBalance weighing system

The LyoBalance weighing system facilitates the determination of the drying speed and drying end point during the freeze drying processes when flasks or vials are used.

Thanks to virtually continuous measurement, the drying speed can be determined in any desired process phase under varying drying conditions.

The drying end point can be determined easily and reliably from the weight loss.

The sample retains its place next to the other vials directly on the shelf     to ensure that the results are representative.

Technical data
Measuring principle:electromagnetic force compensation
Measuring range:0,001 to 30,0 g
Measurement accuracy of measurement:± 0,005 g
Flask size:2R to 20R (in accordance with DIN 58366)
Usable temperature range:-40 °C to + 40 °C
Dimensions (W x H x D):125 x 55 x 45 mm
Cable pass-through:NW 40 small flange or other on request
Software:integrates in LSCplus controller

Cleanroom installation

To conform to even the most stringent requirements for the cleanliness of the production environment and ensure compliance with applicable regulations, the freeze drier can be integrated into a cleanroom.

Glove box connection

High safety requirements are often imposed on unit operation in practice. For example, combinations of freeze dryers and glove boxes are used when freeze drying is necessary to protect products against harmful environmental factors or because the products concerned are highly active and possibly toxic. A special docking frame is used to connect the freeze dryer directly to the glove box. This isolates the entire drying chamber and the working area for product preparation from the technical surroundings.

Implementation using standard docking frames. Special versions are possible on request.

Manual and hydraulic stoppering devices

A manual or automatic stoppering device, depending on the unit type, is used to close drying containers or vials by pressing in stoppers. Electrohydraulic stoppering devices with stainless steel bellow seals are used in particular in pharmaceutical applications.

H<sub>2</sub>O<sub>2</sub> disinfection

Sterilisation with vaporised hydrogen peroxide (VHP; H2O2) is an economical and effective alternative to pure manual disinfection using isopropanol or similar substances and steam sterilisation, which is common practice in production processes.

VHP is especially worthwhile in situations where the capital cost of installing steam sterilisation equipment is too high, but the benefits of using a reproducible process are necessary. With the VHP method, the freeze dryer is connected to a suitable VHP generator in a closed loop, usually by means of hoses and quick-release couplings, so that the VHP generator can also be as needed with other equipment.

Solvent-resistant version

Along with freeze-drying of aqueous media, freeze drying of substances containing aggressive solvents is necessary in some areas such as pharmaceutical research. All of the solvents in this connection have freezing points within the technically manageable range, such as DMSO (eutectic point +15° C), tertiary butanol (+25.5° C), dioxane (+12° C) or acetonitrile (-45° C). Freeze dryers for this application scenario are designed to be chemical resistant, which means they have modified valves and door seals, special vacuum pumps, and modified cooling systems. The particular advantages of lyophilisation compared to liquid removal by evaporation are the better structure of freeze-dried products (powdery or sponge-like, rather than a viscous mass), lower final solvent content and gentler handling.

Inertisation

Drying and ice condenser chambers are inertised by flushing them with an inert gas, such as nitrogen or argon. The air in the chambers at the start of the process, including the oxygen present in the air, is displaced by the inflowing inert gas. This method is used in particular for the drying of products containing solvents for which an inert atmosphere is required in the process chamber.

Drying manifold

The scope of use of pilot freeze dryers can be extended substantially by using drying manifolds mounted directly on the unit or separately. The drying manifolds are connected to the freeze dryer unit by flanges on the unit provided for this purpose, or by vacuum hoses or vacuum pipes. Containers such as ampoules, vials, bottles, wide-neck flasks, round-bottom flasks, etc. can be fitted on the drying manifolds, depending to their construction. Continuous operation is enabled by three-way rubber valves between the single containers and the drying manifold.